Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropediatrics ; 54(4): 244-252, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37054976

RESUMO

BACKGROUND: Metachromatic leukodystrophy (MLD) is a lysosomal enzyme deficiency disorder leading to progressive demyelination and, consecutively, to cognitive and motor decline. Brain magnetic resonance imaging (MRI) can detect affected white matter as T2 hyperintense areas but cannot quantify the gradual microstructural process of demyelination more accurately. Our study aimed to investigate the value of routine MR diffusion tensor imaging in assessing disease progression. METHODS: MR diffusion parameters (apparent diffusion coefficient [ADC] and fractional anisotropy [FA]) were in the frontal white matter, central region (CR), and posterior limb of the internal capsule in 111 MR datasets from a natural history study of 83 patients (age: 0.5-39.9 years; 35 late-infantile, 45 juvenile, 3 adult, with clinical diffusion sequences of different scanner manufacturers) as well as 120 controls. Results were correlated with clinical parameters reflecting motor and cognitive function. RESULTS: ADC values increase and FA values decrease depending on disease stage/severity. They show region-specific correlations with clinical parameters of motor and cognitive symptoms, respectively. Higher ADC levels in CR at diagnosis predicted a disease course with more rapid motor deterioration in juvenile MLD patients. In highly organized tissues such as the corticospinal tract, in particular, diffusion MR parameters were highly sensitive to MLD-associated changes and did not correlate with the visual quantification of T2 hyperintensities. CONCLUSION: Our results show that diffusion MRI can deliver valuable, robust, clinically meaningful, and easily obtainable/accessible/available parameters in the assessment of prognosis and progression of MLD. Therefore, it provides additional quantifiable information to established methods such as T2 hyperintensity.


Assuntos
Imagem de Tensor de Difusão , Leucodistrofia Metacromática , Adulto , Humanos , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Imagem de Tensor de Difusão/métodos , Leucodistrofia Metacromática/diagnóstico por imagem , Relevância Clínica , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética
2.
Stem Cells Dev ; 31(7-8): 163-175, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35323019

RESUMO

Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder primarily affecting the white matter of the nervous system that results from a deficiency of the arylsulfatase A (ARSA). Mesenchymal stem cells (MSCs) are able to secrete ARSA and have shown beneficial effects in MLD patients. In this retrospective analysis, 10 pediatric MLD patients [mesenchymal stem cell group (MSCG)] underwent allogeneic hematopoietic stem cell transplantation (HSCT) and received two applications of 2 × 106 MSCs/kg bodyweight at day +30 and +60 after HSCT between 2007 and 2018. MSC safety, occurrence of graft-versus-host disease (GvHD), blood ARSA levels, chimerism, cell regeneration and engraftment, magnetic resonance imaging (MRI) changes, and the gross motor function were assessed within the first year of HSCT. The long-term data included clinical outcomes and safety aspects of MSCs. Data were compared to a control cohort of seven pediatric MLD patients [control group (CG)] who underwent HSCT only. The application of MSC in pediatric MLD patients after allogeneic HSCT was safe and well tolerated, and long-term potentially MSC-related adverse effects up to 13.5 years after HSCT were not observed. Patients achieved significantly higher ARSA levels (CG: median 1.03 nmol·10-6 and range 0.41-1.73 | MSCG: median 1.58 nmol·10-6 and range 0.44-2.6; P < 0.05), as well as significantly higher leukocyte (P < 0.05) and thrombocyte (P < 0.001) levels within 365 days of MSC application compared to CG patients. Statistically significant effects on acute GvHD, regeneration of immune cells, MRI changes, gross motor function, and clinical outcomes were not detected. In conclusion, the application of MSCs in pediatric MLD patients after allogeneic HSCT was safe and well tolerated. The two applications of 2 × 106/kg allogeneic MSCs were followed by improved engraftment and hematopoiesis within the first year after HSCT. Larger, prospective trials are necessary to evaluate the impact of MSC application on engraftment and hematopoietic recovery.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucodistrofia Metacromática , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Criança , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Leucodistrofia Metacromática/etiologia , Leucodistrofia Metacromática/terapia , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/fisiologia , Estudos Prospectivos , Estudos Retrospectivos
3.
Mol Cell Pediatr ; 7(1): 12, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32910272

RESUMO

BACKGROUND: Long-term outcomes of hematopoietic stem cell transplantation (HSCT) in children with juvenile metachromatic leukodystrophy (MLD) have been investigated systematically, while short-term effects of HSCT on the course of the disease remain to be elucidated. RESULTS: In this study, the clinical course was evaluated over the first 24 months following HSCT, conducted at our center in 12 children with juvenile MLD (mean follow-up 6.75 years, range 3-13.5) and compared with 35 non-transplanted children with juvenile MLD. Motor function (GMFM-88 and GMFC-MLD), cognitive function (FSIQ), peripheral neuropathy (tibial nerve conduction velocity), and cerebral changes (MLD-MR severity score) were tested prospectively. Seven children remained neurologically stable over a long period, five exhibited rapid disease progression over the first 12 to 18 months after transplantation. In the latter, time from first gross motor symptoms to loss of independent walking was significantly shorter compared with non-transplanted patients at the same stage of disease (p < 0.02). Positive prognostic factors were good motor function (GMFM = 100%, GMFC-MLD = 0) and a low MR severity score (≤ 17) at the time of HSCT. CONCLUSIONS: Our results show that if disease progression occurs, this happens early on after HSCT and proceeds faster than in non-transplanted children with juvenile MLD, indicating that HSCT may trigger disease progression.

4.
Ann Clin Transl Neurol ; 4(6): 403-410, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28589167

RESUMO

OBJECTIVE: The aim of this study was to investigate whether the extent and topography of cerebral demyelination correlates with and predicts disease progression in patients with juvenile metachromatic leukodystrophy (MLD). METHODS: A total of 137 MRIs of 46 patients with juvenile MLD were analyzed. Demyelination load and brain volume were quantified using the previously developed Software "clusterize." Clinical data were collected within the German Leukodystrophy Network and included full scale intelligence quotient (FSIQ) and gross motor function data. Voxel-based lesion-symptom mapping (VLSM) across the whole brain was performed to investigate the spatial relationship of cerebral demyelination with motor or cognitive function. The prognostic value of the demyelination load at disease onset was assessed to determine the severity of disease progression. RESULTS: The demyelination load (corrected by the individual brain volume) correlated significantly with gross motor function (r = +0.55) and FSIQ (r = -0.55). Demyelination load at disease onset was associated with the severity of disease progression later on (P < 0.01). VLSM results associated frontal lobe demyelination with loss in FSIQ and more central region demyelination with decline of motor function. Especially progression of demyelination within the motor area was associated with severe disease progression. INTERPRETATION: We were able to show for the first time in a large cohort of patients with juvenile MLD that the demyelination load correlates with motor and cognitive symptoms. Moreover, demyelination load at disease onset, especially the involvement of the central region, predicts severity of disease progression. Thus, demyelination load seems a functionally relevant MRI parameter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...